A Systematic Review of the Biomechanical Impact of Load Carriage on Gait in Older Adults

Authors

DOI:

https://doi.org/10.31489/3081-0531/2025-1-2/4-14

Keywords:

Load Carriage, Older Adults, Gait, Systematic Review, Biomechanics, Dynamic Stability, Fall Risk

Abstract

Objective: To examine the biomechanical effects of load carriage on gait patterns, joint kinematics, and muscle activity during walking in older adults. Methods: A systematic literature search was conducted across five databases (CNKI, Wanfang, VIP, PubMed, and Web of Science) through June 2025. Eight studies met the inclusion criteria. The methodological quality of included studies was assessed using the ROBINS-I Version 2 tool. Results: Asymmetrical load carriage during walking increases step frequency and step width, shortens step length and the gait cycle, induces lateral trunk tilt, and leads to asymmetric muscle activation between body sides. With increasing load, adverse effects on trunk posture and muscle activation become more pronounced, including a significant increase in contralateral hip joint torque. Symmetrical load carriage up to 5% of body weight has no significant effect on gait and may improve static postural stability in older adults. Conclusion: Both asymmetrical and heavier load carriage impose greater biomechanical demands on gait in older adults. Older adults are advised to carry loads symmetrically and keep the weight below 5% of body mass to maintain gait stability and reduce fall risk.

References

1 Glorioso, C. & Sibille, E. (2011). Between destiny and disease: genetics and molecular pathways of human central nervous system aging. Progress in neurobiology, 93(2), 165–181. https://doi.org/10.1016/j.pneurobio.2010.11.006

2 World Health Organization (2021). Falls. World Health Organization. World Health Organization. Retrieved from https://www.who.int/news-room/fact-sheets/detail/falls

3 Robinovitch, S. N., Feldman, F., Yang, Y., Schonnop, R., Leung, P. M., Sarraf, T., Sims-Gould, J., & Loughin, M. (2013). Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet, 381(9860), 47–54. London, England. https://doi.org/10.1016/S0140-6736(12)61263-X

4 Kim, J., Byun, M., & Kim, M. (2020). Physical and Psychological Factors Associated with Poor Self-Reported Health Status in Older Adults with Falls. International journal of environmental research and public health, 17(10), 3548. https://doi.org/10.3390/ijerph17103548

5 Sturdy, J. T., Rizeq, H. N., Whittier, T. T., Daquino, C. J., Silder, A., Corman, A. C., Sessoms, P. H., & Silverman, A. K. (2025). Joint moments and muscle excitations increase with body-mass normalized backpacks across walking slopes. Gait & posture, 120, 234–241. https://doi.org/10.1016/j.gaitpost.2025.04.007

6 Nagaraja, S., Rubio, J. E., Tong, J., Sundaramurthy, A., Pant, A., Owen, M. K., Samaan, M. A., Noehren, B., & Reifman, J. (2025). Effects of an active ankle exoskeleton on the walking biomechanics of healthy men. Frontiers in bioengineering and biotechnology, 13, 1533001. https://doi.org/10.3389/fbioe.2025.1533001

7 Bampouras, T. M. & Dewhurst, S. (2016). Carrying shopping bags does not alter static postural stability and gait parameters in healthy older females. Gait & posture, 46, 81–85. https://doi.org/10.1016/j.gaitpost.2016.02.017

8 Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

9 Risk of Bias Tools (2024). ROBINS-I V2 tool.Risk of Bias Tools Retrieved from https://sites.google.com/site/riskofbiastool/welcome/robins-i-v2

10 Sterne, J. A., Hernán, M. A., Reeves, B. C., Savović, J., Berkman, N. D., Viswanathan, M., Henry, D., Altman, D. G., Ansari, M. T., Boutron, I., Carpenter, J. R., Chan, A. W., Churchill, R., Deeks, J. J., Hróbjartsson, A., Kirkham, J., Jüni, P., Loke, Y. K., Pigott, T. D., Ramsay, C. R., … Higgins, J. P. (2016). ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ (Clinical research ed.), 355, i4919. https://doi.org/10.1136/bmj.i4919

11 Narouei, S., Akatsu, H., & Watanabe, K. (2023). Acute effects of ankle weight loading on regional activity of rectus femoris muscle and lower-extremity kinematics during walking in older adults. Kinesiology, 55(1), 70–79. https://hrcak.srce.hr/ojs/index.php/kinesiology/article/view/21056

12 Allahverdipour, H., Dianat, I., Mameh, G., & Asghari Jafarabadi, M. (2021). Effects of Cognitive and Physical Loads on Dynamic and Static Balance Performance of Healthy Older Adults Under Single-, Dual-, and Multi-task Conditions. Human factors, 63(7), 1133–1140. https://doi.org/10.1177/0018720820924626

13 Badawy, M., Schall, M. C., Jr, Zabala, M. E., Coker, J., Davis, G. A., Sesek, R. F., & Gallagher, S. (2019). Trunk muscle activity among older and obese individuals during one-handed carrying. Applied ergonomics, 78, 217–223. https://doi.org/10.1016/j.apergo.2019.03.007

14 Walsh, G. S., Low, D. C., & Arkesteijn, M. (2018). Effect of stable and unstable load carriage on walking gait variability, dynamic stability and muscle activity of older adults. Journal of Biomechanics, 75, 75–81. https://doi.org/10.1016/j.jbiomech.2018.04.018

15 Kong, P. W. & Chua, Y. K. (2014). Start-up time and walking speed in older adults under loaded conditions during simulated road crossing. Experimental aging research, 40(5), 589–598. https://doi.org/10.1080/0361073X.2014.956630

16 Matsuo, T., Hashimoto, M., Koyanagi, M., & Hashizume, K. (2008). Asymmetric load-carrying in young and elderly women: relationship with lower limb coordination. Gait & posture, 28(3), 517–520. https://doi.org/10.1016/j.gaitpost.2008.02.001

17 Zhang, T., Zhang, J., Ji, R., et al. (2018). A comparative analysis of the effects of different load-bearing methods on walking in older adults. Chinese Journal of Sports Medicine, 37(12), 1005–1010. https://doi.org/10.16038/j.1000-6710.2018.12.006

18 Fan, Y., Li, Z., Han, S., Lv, C., & Zhang, B. (2016). The influence of gait speed on the stability of walking among the elderly. Gait & posture, 47, 31–36. https://doi.org/10.1016/j.gaitpost.2016.02.018

19 Barak, Y., Wagenaar, R. C., & Holt, K. G. (2006). Gait characteristics of elderly people with a history of falls: a dynamic approach. Physical therapy, 86(11), 1501–1510. https://doi.org/10.2522/ptj.20050387

20 Pavol, M. J., Owings, T. M., Foley, K. T., & Grabiner, M. D. (1999). Gait characteristics as risk factors for falling from trips induced in older adults. The journals of gerontology. Series A, Biological sciences and medical sciences, 54(11), M583–M590. https://doi.org/10.1093/gerona/54.11.m583

21 Pijnappels, M., Reeves, N. D., Maganaris, C. N., & van Dieën, J. H. (2008). Tripping without falling; lower limb strength, a limitation for balance recovery and a target for training in the elderly. Journal of electromyography and kinesiology: official journal of the International Society of Electrophysiological Kinesiology, 18(2), 188–196. https://doi.org/10.1016/j.jelekin.2007.06.004

22 McGill, S. M., Marshall, L., & Andersen, J. (2013). Low back loads while walking and carrying: comparing the load carried in one hand or in both hands. Ergonomics, 56(2), 293–302. https://doi.org/10.1080/00140139.2012.752528

23 Vera-Garcia, F. J., Moreside, J. M., & McGill, S. M. (2011). Abdominal muscle activation changes if the purpose is to control pelvis motion or thorax motion. Journal of electromyography and kinesiology: official journal of the International Society of Electrophysiological Kinesiology, 21(6), 893–903. https://doi.org/10.1016/j.jelekin.2011.08.003

24 Bauby, C. E., & Kuo, A. D. (2000). Active control of lateral balance in human walking. Journal of Biomechanics, 33(11), 1433–1440. https://doi.org/10.1016/S0021-9290(00)00101-9

25 Rankin, B. L., Buffo, S. K., & Dean, J. C. (2014). A neuromechanical strategy for mediolateral foot placement in walking humans. Journal of neurophysiology, 112(2), 374–383. https://doi.org/10.1152/jn.00138.2014

26 Schrager, M. A., Kelly, V. E., Price, R., Ferrucci, L., & Shumway-Cook, A. (2008). The effects of age on medio-lateral stability during normal and narrow base walking. Gait & posture, 28(3), 466–471. https://doi.org/10.1016/j.gaitpost.2008.02.009

27 Annaswamy, T. M., Giddings, C. J., Della Croce, U., & Kerrigan, D. C. (1999). Rectus femoris: its role in normal gait. Archives of physical medicine and rehabilitation, 80(8), 930–934. https://doi.org/10.1016/s0003-9993(99)90085-0

28 Cronin, N. J., Avela, J., Finni, T., & Peltonen, J. (2013). Differences in contractile behaviour between the soleus and medial gastrocnemius muscles during human walking. The Journal of experimental biology, 216(Pt 5), 909–914. https://doi.org/10.1242/jeb.078196

29 McAndrew Young, P. M., Wilken, J. M., & Dingwell, J. B. (2012). Dynamic margins of stability during human walking in destabilizing environments. Journal of biomechanics, 45(6), 1053–1059. https://doi.org/10.1016/j.jbiomech.2011.12.027

30 Pontzer, H., Holloway, J. H., 4th, Raichlen, D. A., & Lieberman, D. E. (2009). Control and function of arm swing in human walking and running. The Journal of experimental biology, 212(Pt 4), 523–534. https://doi.org/10.1242/jeb.024927

31 Ortega, J. D., Fehlman, L. A., & Farley, C. T. (2008). Effects of aging and arm swing on the metabolic cost of stability in human walking. Journal of biomechanics, 41(16), 3303–3308. https://doi.org/10.1016/j.jbiomech.2008.06.039

32 Meyns, P., Bruijn, S. M., & Duysens, J. (2013). The how and why of arm swing during human walking. Gait & Posture, 38(4), 555–562. https://doi.org/10.1016/j.gaitpost.2013.02.006

Downloads

Published

23.12.2025

Issue

Section

Physical education